28 آذر 1403
logo

مرکز تحقیقات پیشگیری اولیه از بیماری‌های قلب و عروق

دانشگاه علوم پزشکی تهران

 

 

 

  • تاریخ انتشار : 1403/05/23 - 10:48
  • تعداد بازدید : 53
  • زمان مطالعه : 2 دقیقه

تشخیص سریع و غیر تهاجمی هیپرکالمی در بیماران مبتلا به نارسایی سیستولیک میوکارد با استفاده از مدلی مبتنی بر الگوریتم‌های یادگیری ماشینی

هیپرکالمی یک اختلال الکترولیتی است که به صورت بالقوه تهدید کننده زندگی بوده و اگر به موقع تشخیص داده نشود ممکن است منجر به شرایط ویرانگر و مرگ ناگهانی قلبی شود. نمونه گیری خون برای بررسی سطح پتاسیم زمان بر است و می تواند درمان به موقع هیپرکالمی شدید را به تاخیر بیندازد. بنابراین، محققان در این مطالعه یک روش غیر تهاجمی برای تشخیص صحیح و سریع هیپرکالمی پیشنهاد می کنند.

تشخیص سریع و غیر تهاجمی هیپرکالمی در بیماران مبتلا به نارسایی سیستولیک میوکارد با استفاده از مدلی مبتنی بر الگوریتم‌های یادگیری  {faces}
این مقاله  روش جدیدی برای تشخیص سریع و آسان وضعیتی به نام هیپرکالمی، یعنی داشتن پتاسیم بیش از حد در خون را مورد بررسی قرار می دهد که  به دلیل عوارضی همچون مشکلات قلبی، حتی مرگ ناگهانی قلبی بسیار خطرناک می باشد. محققان روشی را ابداع کرده اند که نیازی به آزمایش خون ندارد و در عوض، از الگوریتم یادگیری ماشینی برای تجزیه و تحلیل سیگنال‌های الکتریکی قلب استفاده می‌کند که با ابزار رایجی به نام الکتروکاردیوگرام (ECG) اندازه‌گیری می‌شوند.
 
محققان دریافتند که با مشاهده الگوهای خاص در ECG، می توان سطح پتاسیم در بیمار را اندازه گیری کرد. در این مطالعه  از تکنیکی به نام آنالیز مؤلفه اصلی (PCA) برای ساده کردن داده‌های ECG استفاده شد و سپس مدل‌های مختلف یادگیری ماشین در شناسایی هیپرکالمی مورد ارزیابی قرار گرفت.
 
 

Abstract

Background: 

Hyperkalemia is a potentially life-threatening electrolyte disturbance that if not diagnosed on time may lead to devastating conditions and sudden cardiac death. Blood sampling for potassium level checks is time-consuming and can delay the treatment of severe hyperkalemia on time. So, we propose a non-invasive method for correct and rapid hyperkalemia detection.

Methods: 

The cardiac signal of patients referred to the Pediatrics Emergency room of Shahid Rejaee Hospital was measured by a 12-lead Philips electrocardiogram (ECG) device. Immediately, the blood samples of the patients were sent to the laboratory for potassium serum level determination. We defined 16 features for each cardiac signal at lead 2 and extracted them automatically using the algorithm developed. With the help of the principal component analysis (PCA) algorithm, the dimension reduction operation was performed. The algorithms of decision tree (DT), random forest (RF), logistic regression, and support vector machine (SVM) were used to classify serum potassium levels. Finally, we used the receiver operation characteristic (ROC) curve to display the results

Results: 

In the period of 5 months, 126 patients with a serum level above 4.5 (hyperkalemia) and 152 patients with a serum potassium level below 4.5 (normal potassium) were included in the study. Classification with the help of a RF algorithm has the best result. Accuracy, Precision, Recall, F1, and area under the curve (AUC) of this algorithm are 0.71, 0.87, 0.53, 0.66, and 0.69, respectively

Conclusions: 

A lead2-based RF classification model may help clinicians to rapidly detect severe dyskalemias as a non-invasive method and prevent life-threatening cardiac conditions due to hyperkalemia.

  • Article_DOI : 10.4103/jfmpc.jfmpc_2025_23
  • نویسندگان :
  • گروه خبر : مقالات علمی,مقالات 2024
  • کد خبر : 273927
کلمات کلیدی
شیرین باوری
تهیه کننده:

شیرین باوری

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه